1,383 research outputs found

    Counterion-Mediated Weak and Strong Coupling Electrostatic Interaction between Like-Charged Cylindrical Dielectrics

    Full text link
    We examine the effective counterion-mediated electrostatic interaction between two like-charged dielectric cylinders immersed in a continuous dielectric medium containing neutralizing mobile counterions. We focus on the effects of image charges induced as a result of the dielectric mismatch between the cylindrical cores and the surrounding dielectric medium and investigate the counterion-mediated electrostatic interaction between the cylinders in both limits of weak and strong electrostatic couplings (corresponding, e.g., to systems with monovalent and multivalent counterions, respectively). The results are compared with extensive Monte-Carlo simulations exhibiting good agreement with the limiting weak and strong coupling results in their respective regime of validity.Comment: 19 pages, 10 figure

    NuSTAR detection of X-ray heating events in the quiet Sun

    Get PDF
    The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1 MK and emission measures of (0.6–15) × 1044 cm−3 describe their spectra well, resulting in thermal energies in the range (2–6) × 1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component. However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in soft X-ray flux than the largest solar flares

    Spin Gauge Theory of Gravity in Clifford Space

    Full text link
    A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: "extra dimensions" are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1)xSU(2)xSU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra.Comment: 9 pages, talk presented at the QG05 conference, 12-16 September 2005, Cala Gonone, Ital

    Adaptive Resolution Simulation of Liquid Water

    Full text link
    We present a multiscale simulation of liquid water where a spatially adaptive molecular resolution procedure allows for changing on-the-fly from a coarse-grained to an all-atom representation. We show that this approach leads to the correct description of all essential thermodynamic and structural properties of liquid water.Comment: 4 pages, 3 figures; changed figure

    Microflare Heating of a Solar Active Region Observed with NuSTAR, Hinode/XRT, and SDO/AIA

    Get PDF
    NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflare's impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about 2.5×10252.5 \times 10^{25} erg s1^{-1}. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of δ7\delta \ge 7 with a low energy cut-off Ec7E_{c} \lesssim 7 keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.Comment: Accepted for publication in ApJ. 14 pages with 12 figures and 1 tabl

    Functionalization of graphene at the organic/water interface

    Get PDF
    A simple method for the deposition of noble metal (Pd, Au) nanoparticles on a free-standing chemical vapour deposited graphene (CVD GR) monolayer is reported. The method consists of assembling the high purity CVD GR, by transfer from poly (methyl methacrylate) (PMMA), at the organic/water interface. Metal deposition can then proceed using either spontaneous or electrochemically-controlled processes. The resultant graphene-based metal nanoclusters are characterized using atomic force and electron microscopy techniques, and the location of the nanostructures underneath the graphene layer is determined from the position and the intensity changes of the Raman bands (D, G, 2D). This novel process for decoration of a single-layer graphene sheet with metal nanoparticles using liquid/liquid interfaces opens an alternative and useful way to prepare low dimensional carbon-based nanocomposites and electrode materials

    Review of specific features and challenges in the current Internet of Things systems impacting their security and reliability

    Get PDF
    The current development of the Internet of Things (IoT) technology poses significant challenges to researchers and industry practitioners. Among these challenges, security and reliability particularly deserve attention. In this paper, we provide a consolidated analysis of the root causes of these challenges, their relations, and their possible impacts on IoT systems’ general quality characteristics. Further understanding of these challenges is useful for IoT quality engineers when defining testing strategies for their systems and researchers to consider when discussing possible research directions. In this study, twenty specific features of current IoT systems are discussed, divided into five main categories: (1) Economic, managerial and organisational aspects, (2) Infrastructural challenges, (3) Security and privacy challenges, (4) Complexity challenges and (5) Interoperability problems

    Towards the Unification of Gravity and other Interactions: What has been Missed?

    Full text link
    Faced with the persisting problem of the unification of gravity with other fundamental interactions we investigate the possibility of a new paradigm, according to which the basic space of physics is a multidimensional space C{\cal C} associated with matter configurations. We consider general relativity in C{\cal C}. In spacetime, which is a 4-dimensional subspace of C{\cal C}, we have not only the 4-dimensional gravity, but also other interactions, just as in Kaluza-Klein theories. We then consider a finite dimensional description of extended objects in terms of the center of mass, area, and volume degrees of freedom, which altogether form a 16-dimensional manifold whose tangent space at any point is Clifford algebra Cl(1,3). The latter algebra is very promising for the unification, and it provides description of fermions.Comment: 11 pages; Talk presented at "First Mediterranean Conference on Classical and Quantum Gravity", Kolymbari, Crete, Greece, 14-18 September 200

    Quality and reliability metrics for IoT systems:a consolidated view

    Get PDF
    Quality and reliability metrics play an important role in the evaluation of the state of a system during the development and testing phases, and serve as tools to optimize the testing process or to define the exit or acceptance criteria of the system. This study provides a consolidated view on the available quality and reliability metrics applicable to Internet of Things (IoT) systems, as no comprehensive study has provided such a view specific to these systems. The quality and reliability metrics categorized and discussed in this paper are divided into three categories: metrics assessing the quality of an IoT system or service, metrics for assessing the effectiveness of the testing process, and metrics that can be universally applied in both cases. In the discussion, recommendations of proper usage of discussed metrics in a testing process are then given
    corecore